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1 Introduction

We now start to explore models of incomplete information. Informally, a
game of incomplete information is a game where the players do not have
common knowledge of the game being played. This idea is tremendously
important in capturing many economic situations, where a variety of features
of the environment may not be commonly known. Among the aspects of the
game that the players might not have common knowledge of are:

• Payoffs

• Who the other players are

• What moves are possible

• How outcome depends on the action.

• What opponent knows, and what he knows I know....

To take a couple of simple examples: (1) in price or quantity competition,
firms might know their own costs, but not the costs of their rivals; (2)
firms investing in R&D might know how their project is coming along, but
have no idea who else is working on the same problem; (3) the government
may design the tax code not envisioning what ploys people will come up
with to avoid taxs; (4) countries may negotiate climate change agreements
having different beliefs about the costs and benefits of global climate change;
(5) plaintiffs may offer settlements to defendants not knowing what sort of
case the defendant will be able to bring to court, or what sort of case the
defendant thinks the plaintiff will be able to bring.
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2 Examples

2.1 Entry with a “Tough” Incumbent

Recall our canonical entry model where Firm 2 (the entrant) must decide
whether or not to enter a market, and Firm 1 (the incumbent) must decide
whether to Fight or Accomodate entry. Let’s modify this game by assuming
that with probability 1−p, the incumbent is “tough,” while with probability
p, the incumbent is normal. The payoffs in the game depend on whether
the incumbent is tough or normal:
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2.2 Sealed Bid Auction

Two bidders are trying to purchase the same item in a sealed bid auction.
The bidders simultaneously submit bids b1 and b2 and the auction is sold
to the highest bidder at his bid price (this is called a “first price” auction).
If there is a tie, there is a coin flip to determine the winner. Suppose the
players utilities are:

ui (bi, b−i) =




vi − bi if bi > b
−i

1

2
(vi − bi) if bi = b

−i

0 if bi < b
−i

The key informational feature is the each player knows his own value for
the item (i.e. bidder iknows vi), but does not know the valuation of his
rival. Instead, we assume that each bidder had a prior belief that his rival’s
valuation is a draw from a uniform distribution on [0, 1], and that these prior
beliefs are common knowledge.
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2.3 Public Good Provision

Two faculty members in the economics department both want to recruit a
top graduate student to their department. Either faculty member can ensure
the student will accept the offer by getting on the phone and shamelessly
promoting the graduate program. However, there is some cost to making
this call. Assume the payoffs can be represented as follows:

Call Don’t
Call 1− c1, 1− c2 1− c2, 1
Don’t 1, 1− c1 0, 0

Assume the faculty members choose their actions simultaneously (or at least
without learning the other’s action) and the faculty have private information
about their costs of making the call. That is, faculty member i knows ci,
and believes that cj is a random draw from a uniform distribution on [c, c].
Faculty member i’s belief about cj is commonly known.

An alternative formulation of this problem is that faculty member one
tells everyone everything, so that everyone knows his cost c1 = 1/2. How-
ever, c2 ∈ {c, c} is known only to player two.

Or, we could assume that player one is a senior faculty member who
knows from long experience that c1 = 1/2 and c2 = 2/3. However, player
two is a new assistant professor whose prior belief is that c1, c2 ∼ U [0, 2] and
are independent.

3 Definitions

Definition 1 A game with incomplete information G = (Θ, S, P, u) consists
of:

1. A set Θ = Θ1 × ...×ΘI , where Θi is the (finite) set of possible types
for player i.

2. A set S = S1 × ... × SI , where Si is the set of possible strategies for
player i.

3. A joint probability distribution p (θ1, ..., θI) over types. For finite type
space, assume that p (θi) > 0 for all θi ∈ Θi.

4. Payoff functions ui : S ×Θ→ R.

Consider how this definition relates to each of our examples.
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1. Entry: Θ1 = {tough, normal}; Θ2 = {normal}.

2. Auction: Θ1 = Θ2 = [0, 1].

3. Public Good: Θ1 = Θ2 = [c, c].

We assume that players know their own types, but do not know the types
of other players.

Remark 1 Note that payoffs can depend not only on your own type, but on
your rivals’ types. If ui depends on θi, but not on θ

−i, we sometimes say
the game has private values.

In order to analyze these types of games, we rely on a fundamental (and
Nobel-prize winning) observation by Harsanyi (1968):

Games of incomplete information can be thought of as games of
complete but imperfect information where nature makes the first
move (selecting θ1, ..., θI), but not everyone observes nature’s
move (i.e. player i learns θi but not θ−i).

Consider formulating the entry model in exactly this way.
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Nature

p 1 - p

In analyzing this sort of game, we cam think of nature simply as another
player. The only difference is that rather than maximizing a payoff, nature
just uses a fixed mixed strategy.

This observation should make the following definitions look obvious.
They just say that to analyze a game of incomplete information, we can
look at the Nash Equilibrium of the game where nature is a player.
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Definition 2 A Bayesian pure strategy for player i in G is a function fi :
Θi → Σi. Write SΘi for the set of Bayesian pure strategies.

Definition 3 A Bayesian strategy profile (f1, ..., fI) is a Bayesian Nash

Equilibrium if for all i,

fi ∈ arg max
f ′
i
∈S
Θi

i

∑

θ∈Θ

ui
(
f ′i (θi) , f−i (θ−i) , θi, θ−i

)
p (θi, θ−i)

or alternatively, for all i, θi and si :

∑

θ−i∈Θ−i

ui (fi (θi) , f−i (θ−i) , θi, θ−i) p (θ−i|θi)

≥
∑

θ−i∈Θ−i

ui (si, f−i (θ−i) , θi, θ−i) p (θ−i|θi)

The second part of the definition just says that in order to maximize
your expected payoff given that you know your types, then the strategy you
choose for each type should maximize your payoff conditional on your having
that type.

Remark 2 A Bayesian Nash Equilibrium is simply a Nash Equilibrium of

the game where Nature moves first, chooses θ ∈ Θ from a distribution with

probability p (θ) and reveals θi to player i.

4 Solving Bayesian Games

4.1 Public Good: version A

Consider a version of the public good game where

• Player 1 has a known cost c1 < 1/2;

• Player 2 has cost c with probability p and c with probability 1− p.

Assume that 0 < c < 1 < c and that p < 1/2.

Proposition 1 The unique Bayesian Nash Equilibrium is f1 = Call and
f2 (c) = Don′t for all c.
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To prove this, keep in mind that each type of player must play a best
response. When player 2 has type c, then calling is strictly dominated:

u2 (s1, Call; c) < u2
(
s1,Don′t; c

)
,

for all s1. Thus, f2 (c) = Don′t.
Now, for player 1,

u1 (Call, f2; c1) = 1− c1

u1
(
Don′t, f2; c1

)
= pu1

(
Don′t, f2 (c) ; c1

)
+(1− p)u1

(
Don′t, f2 (c) ; c1

)
≤ p · 1 + (1− p) · 0 = p.

Since 1− c1 > p, then f1 (c1) = Call.
But then when player 2 has type c:

u2 (f1, Call; c) = 1− c

u2
(
f1,Don′t; c

)
= 1

so f2 (c) = Don′t.
Note that this process works a bit like iterated dominance.

4.2 Public Good: version B

Now imagine that c1 and c2 are independent random draws from a uniform
distribution on [0, 2].

Proposition 2 The (essentially) unique Bayesian Nash Equilibrium is

fi (ci) =

{
Call if ci ≤ 2/3
Don′t if ci > 2/3

To prove that this is actually a BNE is easy. We can just check that each
player’s conjectured strategy is a best response to the other’s – in particular,
that each player’s strategy is a best response given that his opponent will
call with probability 1/3 and won’t call with probability 2/3.

To illustrate uniqueness, let’s work through how to derive the equilib-
rium. The first observation is the following: if fi (ci) = Call then fi (c

′

i) =
Call for all c′i < ci. To see this, note that if fi (ci) = Call, then:

Ec
−i
ui (Call, f2 (c−i) ; ci) ≥ Ec

−i
ui

(
Don′t, f2 (c−i) ; ci

)
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which implies that:
1− ci ≥ z−i

where we let z−i denote the payoff to not calling. This implies that for all
c′i < ci :

1− c′i > z−i

or equivalently

Ec
−i
ui

(
Call, f2 (c−i) ; c

′

i

)
≥ Ec

−i
ui

(
Don′t, f2 (c−i) ; c

′

i

)
.

There is a simple intuition: namely that calling is more attractive if the costs
are lower.

In light of Observation 1, a Bayesian Nash Equilibrium must be of the
form:

f1 (c1) =

{
Call if c1 ≤ c∗

1

Don′t if c1 > c∗
1

f2 (c2) =

{
Call if c2 ≤ c∗

2

Don′t if c2 > c∗
2

for some “cut-off” costs c∗
1
, c∗

2
. (Note: it will turn out that when ci is exactly

equal to c∗i , then agent i is indifferent to calling or not. This is why the
equilibrium is “essentially” unique.)

Let

zj = Pr
[
i will call given cut-off c∗j

]
= Pr

[
cj ≤ c∗j

]
=

1

2
c∗j .

For these strategies to be a BNE, we need:

1− ci ≥ z−i for all ci ≤ c∗i

1− ci < z−i for all ci > c∗i

Or equivalently that 1− c∗i = z−i. Thus, for i = 1, 2,

1− c∗i =
1

2
c∗i

and hence the unique equilibrium is to call whenever ci < 2/3.

Remark 3 Note that the equilibrium outcome is inefficient in several ways.
First, there is “under-investment” in the public good – it is always efficient
for someone to call, and yet with probability 4/9, no one calls. Second, there
is “miscoordination” – with probability 1/9 both parties call even though
this is inefficient.
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4.3 Sealed Bid Auction

Proposition 3 In the first price sealed bid auction with valuations uni-
formly distributed on [0, 1], the unique BNE is fi (vi) = vi/2 for i = 1, 2.

Again, to verify that this is a BNE is relatively easy. We just show that
each type of each player is using a best response. Note that:

Ev2u1 (b1, f2; v1, v2) = (v1 − b1) Pr [f2 (v2) < b1]

+
1

2
(v1 − b1) Pr [f2 (v2) = b1] .

We assume b1 ∈ (0, 1/2]. No large bid makes sense given f2. Then:

Ev2u1 (b1, f2; v1, v2) = (v1 − b1) 2b1

Maximizing this by choice of b1, we obtain the first order condition:

0 = 2v1 − 4b1 ⇒ b1 = v1/2.

To show uniqueness (or to find the equilibrium if you didn’t already know
it) is harder. To do it, let’s consider bidder one’s optimization problem given
f2. If we assume that f2 is strictly increasing, then ties occur with probability
zero, so bidder one’s problem is:

max
b1

(v1 − b1)Pr [f2 (v2) < b1]

If we further assume that f2 is increasing, then we have

Pr [f2 (v2) < b1] = Pr
[
v2 < f−1

2
(b1)

]
= f−1

2
(b1) .

Finally if f2 is differentiable, we can solve:

max
b1

(v1 − b1) f
−1

2
(b1)

to obtain the first order condition:

0 = −f−1

2
(b1) + (v1 − b1)

1

f ′
2

(
f−1

2
(b1)

) .
For f1, f2 to be an equilibrium, it must be that:

b1 = f1 (v1)
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so the first order condition is

0 = −f−1

2
(f1 (v1)) + (v1 − f1 (v1))

1

f ′
2

(
f−1

2
(f1 (v1))

) .
Finally, assuming we can look for a symmetric equilibrium with f1 = f2 = f ,
the first order condition for optimality becomes:

0 = −v1 + (v1 − f1 (v1))
1

f ′ (v1)
.

Solving this differential equation gives the equilibrium.

4.4 A Lemons Problem

Consider a seller of a used car and a potential buyer of that car. Suppose
that quality of the car, θ, is a uniform draw from [0, 1]. This quality is known
to the seller, but not to the buyer. Suppose that the buyer can make an
offer p ∈ [0, 1] to the seller, and the seller can then decide whether to accept
or reject the buyer’s offer. (Note: This sounds like a dynamic game, but we
can think of it as simultaneous-move if we think of the seller as announcing
the set of all prices she will accept and all those she will reject.)

Payoffs are as follows:

uS =

{
p if offer accepted
θ if offer rejected

uB =

{
a+ bθ − p if offer accepted
0 if offer rejected

Assume that a ∈ [0, 1), that b ∈ (0, 2) , and that a + b > 1. These as-
sumptions imply that for all θ, it is more efficient for the buyer to own the
car.

Proposition 4 The (essentially) unique BNE is for the buyer to offer p =
a/ (2− b) and the seller to accept if and only if p ≥ θ.

To prove this, we first consider the seller. It is easy to see that the
strategy of accepting if and only if p ≥ θ is weakly dominant for the seller.
Now consider the buyer’s problem.

EθuB (p;S accepts if p ≥ θ) =

∫
1

0

1{θ<p} (a+ bθ − p)dθ

=

∫ p

0

(a+ bθ − p) dθ

= p

(
a+

1

2
bp− p

)
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Choosing p to maximize this expression gives the first order condition

0 = a+ (b− 2) p.

Note that the ex ante quality of the car is 1/2. However, given an offer
p, the expected value of the car conditional on the seller accepting the offer
(i.e. conditional on θ ≤ p) is p/2 ≤ 1/2. This is sometime’s called the
winner’s curse (here it’s really a buyer’s curse). Note that what gives rise
to this effect is that the seller’s information is directly payoff-relevant to the
buyer. Unlike our previous examples, we do not have private values.

Remark 4 If a = 0, then the buyer’s curse is so strong that the unique
equilibrium is for the buyer to offer a price p = 0. Trade never occurs
despite it the fact that there are always gains from trading.
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